A network model of successive partitioning-limited solute diffusion through the stratum corneum.
نویسندگان
چکیده
As the most exposed point of contact with the external environment, the skin is an important barrier to many chemical exposures, including medications, potentially toxic chemicals and cosmetics. Traditional dermal absorption models treat the stratum corneum lipids as a homogenous medium through which solutes diffuse according to Fick's first law of diffusion. This approach does not explain non-linear absorption and irregular distribution patterns within the stratum corneum lipids as observed in experimental data. A network model, based on successive partitioning-limited solute diffusion through the stratum corneum, where the lipid structure is represented by a large, sparse, and regular network where nodes have variable characteristics, offers an alternative, efficient, and flexible approach to dermal absorption modeling that simulates non-linear absorption data patterns. Four model versions are presented: two linear models, which have unlimited node capacities, and two non-linear models, which have limited node capacities. The non-linear model outputs produce absorption to dose relationships that can be best characterized quantitatively by using power equations, similar to the equations used to describe non-linear experimental data.
منابع مشابه
A Non-steady-state, Biphasic Model for Solute Permeation through Stratum Corneum
The diffusion equation has been solved numerically for the non steady-state problem of a two-dimensional, biphasic stratum corneum membrane. A brickand-mortar geometry was used, having variable relative phase permeability, corneocyte arrangement and corneocyte/lipid phase partition coefficient. The dependence of the diffusional pathway and the overall barrier function is shown to depend on thes...
متن کاملDiffusion modelling of percutaneous absorption kinetics: 4. Effects of a slow equilibration process within stratum corneum on absorption and desorption kinetics.
One of the main functions of the skin is to control the ingress and egress of water into and out of the body. The transport kinetics of water in the stratum corneum (SC), the dominant site of resistance in the skin, is normally described assuming a homogeneous membrane model. In the present work, the desorption of water from SC was studied and profiles obtained for amount desorbed versus time p...
متن کاملHypothesis: the epidermal permeability barrier is a porous medium.
The stratum corneum is a complex biological material characterized by very low permeability to water and most other molecules. This material may be thought of as a 'porous medium' composed of impermeable and permeable regions. Intercellular lipid membranes in the stratum corneum are postulated to exist in a mixture of two phases: solid (i.e. impermeable) and liquid crystalline (permeable). The ...
متن کاملMinoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting
In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL), containing minoxidil (2%) and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (...
متن کاملراهبردهای افزایش نفوذ در دارورسانی پوستی
Transdermal drug delivery (TDD) is a non-invasive, topical administration method for therapeutic agents. Transdermal delivery also has advantages including providing release for long periods of time, improving patient compliance, and generally being inexpensive. Despite these advantages, the use of TDD has been limited by innate barrier functions of the skin. Only small (<500 Da), lipophilic mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 262 3 شماره
صفحات -
تاریخ انتشار 2010